Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.918
Filter
1.
FASEB J ; 38(8): e23590, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38656553

ABSTRACT

Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.


Subject(s)
Hyperalgesia , Inflammation , Interleukin-6 , Microglia , Protein Kinase C-epsilon , STAT3 Transcription Factor , Animals , STAT3 Transcription Factor/metabolism , Microglia/metabolism , Protein Kinase C-epsilon/metabolism , Protein Kinase C-epsilon/genetics , Mice , Interleukin-6/metabolism , Interleukin-6/genetics , Inflammation/metabolism , Hyperalgesia/metabolism , Male , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Protein Binding , Phosphorylation , Pain/metabolism , Freund's Adjuvant
2.
Clin Immunol ; 263: 110206, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38599263

ABSTRACT

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.

3.
Front Cell Dev Biol ; 12: 1370772, 2024.
Article in English | MEDLINE | ID: mdl-38655066

ABSTRACT

Introduction: This study aimed to explore the transcriptomic profile of premature ovarian insufficiency (POI) by investigating alterations in gene expression. Methods: A total of sixty-one women, comprising 31 individuals with POI in the POI group and 30 healthy women in the control group (HC group), aged between 24 and 40 years, were recruited for this study. The transcriptomic profiles of peripheral blood samples from all study subjects were analyzed using RNA-sequencing. Results: The results revealed 39 differentially expressed genes in individuals with POI compared to healthy controls, with 10 upregulated and 29 downregulated genes. Correlation analysis highlighted the relationship between the expression of SLC25A39, CNIH3, and PDZK1IP1 and hormone levels. Additionally, an effective classification model was developed using SLC25A39, CNIH3, PDZK1IP1, SHISA4, and LOC389834. Functional enrichment analysis demonstrated the involvement of these differentially expressed genes in the "haptoglobin-hemoglobin complex," while KEGG pathway analysis indicated their participation in the "Proteoglycans in cancer" pathway. Conclusion: The identified genes could play a crucial role in characterizing the genetic foundation of POI, potentially serving as valuable biomarkers for enhancing disease classification accuracy.

5.
Acta Pharm Sin B ; 14(4): 1845-1863, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572112

ABSTRACT

Lipid-coated perfluorocarbon nanodroplets (lp-NDs) hold great promise in bio-medicine as vehicles for drug delivery, molecular imaging and vaccine agents. However, their clinical utility is restricted by limited targeted accumulation, attributed to the innate immune system (IIS), which acts as the initial defense mechanism in humans. This study aimed to optimize lp-ND formulations to minimize non-specific clearance by the IIS. Ginsenosides (Gs), the principal components of Panax ginseng, possessing complement inhibition ability, structural similarity to cholesterol, and comparable fat solubility to phospholipids, were used as promising candidate IIS inhibitors. Two different types of ginsenoside-based lp-NDs (Gs lp-NDs) were created, and their efficacy in reducing IIS recognition was examined. The Gs lp-NDs were observed to inhibit the adsorption of C3 in the protein corona (PC) and the generation of SC5b-9. Adding Gs to lp-NDs reduced complement adsorption and phagocytosis, resulting in a longer blood circulation time in vivo compared to lp-NDs that did not contain Gs. These results suggest that Gs can act as anti-complement and anti-phagocytosis adjuvants, potentially reducing non-specific clearance by the IIS and improving lifespan.

6.
Sleep Med ; 118: 16-28, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38581804

ABSTRACT

OBJECTIVE: Clinical Practice Guidelines (CPGs) are crucial in standardizing the management of obstructive sleep apnea (OSA) in adults. However, there has been insufficient evaluation of the overall quality of CPGs for adult OSA. This review aimed to comprehensively assess the overall quality of CPGs in the field of adult OSA. METHODS: A systematic search was conducted on various literature databases, guideline-related databases, and academic websites from January 2013 to December 2023 to select CPGs relevant to adult OSA. The methodological and reporting quality of the eligible CPGs were thoroughly appraised by three reviewers using the AGREE II instrument and RIGHT checklist, respectively. RESULTS: This review included 44 CPGs, consisting of 42 CPGs in English and 2 CPGs in Chinese. The assessment of methodological quality revealed that four domains attained an average standardized score above 60%. Among the domains, "clarity of presentation" received the highest standardized score of 85.10%, while the lowest standardized score was observed in the "rigor of development" domain with the value of 56.77%. The evaluation of reporting quality indicated an overall reporting rate of 51.30% for the eligible CPGs, with only three domains achieving an average reporting rate higher than 50%. The domain with the highest reporting rate was "basic information" at 60.61%, while the domain with the lowest reporting rate was "review and quality assurance" at 15.91%. Furthermore, a significantly positive correlation was found between the AGREE II standardized scores and the RIGHT reporting rates (r = 0.808, P < 0.001). CONCLUSIONS: The overall quality of the currently available guidelines for adult OSA demonstrated considerable variability. Researchers should prioritize the utilization of evidence-based methods and adhere to the items listed in the RIGHT checklist when developing CPGs to enhance efficient clinical decision-making and promote the translation of evidence into practice.

8.
Environ Toxicol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560766

ABSTRACT

While pachymic acid (PA), a key component of Poria cocos (Schw.), has demonstrated anti-tumor effects in lung, breast, and pancreatic cancers, its impact on renal cell carcinoma (RCC) is unclear. This study evaluated the effect of PA on proliferation, migration, and apoptosis in human renal cancer A498 and ACHN cells as well as in cancer xenograft mice using wound scratch test, Western blotting, and co-immunoprecipitation assays. In a dose- and time-dependent manner, PA exhibited significant inhibition of RCC cell proliferation, migration, and invasion, accompanied by the induction of apoptosis. Additionally, PA upregulated the expression of tumor protein p53-inducible nuclear protein 2 (TP53INP2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), which were downregulated in renal papillary and chromophobe carcinoma, resulting in inhibited tumor growth in mice. PA treatment elevated cleaved-caspase 3 and 8, and PARP levels, and facilitated TP53INP2 and TRAF6 binding to caspase 8, promoting its ubiquitination. Molecular docking revealed interactions between PA and TP53INP2, TRAF6. In summary, PA inhibits RCC development by upregulating TP53INP2 and promoting TRAF6-induced caspase 8 ubiquitination, activating apoptotic pathways.

9.
Cell Rep ; 43(5): 114140, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38656873

ABSTRACT

Women are more vulnerable to stress and have a higher likelihood of developing mood disorders. The serotonin (5HT) system has been highly implicated in stress response and mood regulation. However, sex-dependent mechanisms underlying serotonergic regulation of stress vulnerability remain poorly understood. Here, we report that adult hippocampal neural stem cells (NSCs) of the Ascl1 lineage (Ascl1-NSCs) in female mice express functional 5HT1A receptors (5HT1ARs), and selective deletion of 5HT1ARs in Ascl1-NSCs decreases the Ascl1-NSC pool only in females. Mechanistically, 5HT1AR deletion in Ascl1-NSCs of females leads to 5HT-induced depolarization mediated by upregulation of 5HT7Rs. Furthermore, repeated restraint stress (RRS) impairs Ascl1-NSC maintenance through a 5HT1AR-mediated mechanism. By contrast, Ascl1-NSCs in males express 5HT7R receptors (5HT7Rs) that are downregulated by RRS, thus maintaining the Ascl1-NSC pool. These findings suggest that sex-specific expression of distinct 5HTRs and their differential interactions with stress may underlie sex differences in stress vulnerability.

10.
JMIR Form Res ; 8: e54326, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657236

ABSTRACT

BACKGROUND: Tinnitus is a complex and heterogeneous disease that has been identified as a common manifestation of COVID-19. To gain a comprehensive understanding of tinnitus symptoms in individuals following COVID-19 infection, we conducted an online survey called the China Ear Nose and Throat Symptom Survey in the COVID-19 Pandemic (CENTSS) among the Chinese population. OBJECTIVE: Our objective was to investigate tinnitus and ear-related symptoms after COVID-19 infection in the Chinese population, with the aim of providing a solid empirical foundation for improved health care. The findings from CENTSS can contribute to the development of enhanced management strategies for tinnitus in the context of long COVID. By gaining a better understanding of the factors contributing to tinnitus in individuals with COVID-19, health care providers can tailor interventions to address the specific needs of affected patients. Furthermore, this study serves as a basis for research on the long-term consequences of COVID-19 infection and its associated tinnitus symptoms. METHODS: A quantitative, online, cross-sectional survey study design was used to explore the impact of the COVID-19 pandemic on experiences with tinnitus in China. Data were collected through an online questionnaire designed to identify the presence of tinnitus and its impacts. Descriptive statistics were used to analyze individuals' demographic characteristics, COVID-19 infection-related ear symptoms, and the cognitive and emotional implications of tinnitus. Univariable and multivariable logistic regression analyses were used to model the cross-sectional baseline associations between demographic characteristics, noise exposure, educational level, health and lifestyle factors, and the occurrence of tinnitus. RESULTS: Between December 19, 2022, and February 1, 2023, we obtained responses from 1262 Chinese participants representing 24 regions, with an average age of 37 years. Among them, 540 patients (42.8%) reported experiencing ear-related symptoms after COVID-19 infection. Only 114 (9%) of these patients sought medical attention specifically for their ear symptoms, while 426 (33.8%) did not seek hospital care. Tinnitus emerged as the most prevalent and impactful symptom among all ear-related symptoms experienced after COVID-19 infection. Of the respondents, female participants (688/888, 77.78%), younger individuals (<30 years), individuals with lower education levels, participants residing in western China, and those with a history of otolaryngology diseases were more likely to develop tinnitus following COVID-19 infection. CONCLUSIONS: In summary, tinnitus was identified as the most common ear-related symptom during COVID-19 infection. Individuals experiencing tinnitus after COVID-19 infection were found to have poorer cognitive and emotional well-being. Different ear-related symptoms in patients post-COVID-19 infection may suggest viral invasion of various parts of the ear. It is therefore crucial to monitor and manage hearing-related changes resulting from COVID-19 as clinical services resume.

11.
Acad Radiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38658211

ABSTRACT

RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) status in invasive breast cancer (IBC). MATERIALS AND METHODS: In this multicenter, retrospective study, 832 pathologically confirmed IBC patients were recruited from eight hospitals. The samples were divided into training, internal test, and external test sets. Deep learning and handcrafted radiomics features reflecting tumor phenotypes on BMUS and CDFI images were extracted. The BMUS score and CDFI score were calculated after radiomics feature selection. Subsequently, a DLRN was developed based on the scores and independent clinic-ultrasonic risk variables. The performance of the DLRN was evaluated for calibration, discrimination, and clinical usefulness. RESULTS: The DLRN predicted the LVI with accuracy, achieving an area under the receiver operating characteristic curve of 0.93 (95% CI 0.90-0.95), 0.91 (95% CI 0.87-0.95), and 0.91 (95% CI 0.86-0.94) in the training, internal test, and external test sets, respectively, with good calibration. The DLRN demonstrated superior performance compared to the clinical model and single scores across all three sets (p < 0.05). Decision curve analysis and clinical impact curve confirmed the clinical utility of the model. Furthermore, significant enhancements in net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indicated that the two scores could serve as highly valuable biomarkers for assessing LVI. CONCLUSION: The DLRN exhibited strong predictive value for LVI in IBC, providing valuable information for individualized treatment decisions.

12.
Environ Pollut ; 349: 123939, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38593938

ABSTRACT

Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.

13.
RSC Adv ; 14(16): 11470-11481, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38601703

ABSTRACT

Sulfur-doped activated carbon has proved to be a promising metal-free catalyst for persulfate (PDS) catalytic activation for the oxidation of aqueous refractory organics. Herein, sulfur-doped porous carbon (ACS) catalysts with different pore structures and doped-S contents were prepared via a template method using d(+)-glucose as the carbon source, sulfur as the sulfur source, and nano-MgO with different particle sizes as templates. Characterization results showed that the particle size of MgO significantly affects the pore structure and doped-S content of ACSs catalysts: a sample synthesized with 20 nm MgO as template (ACS-20) presented the highest content of doped-S and a mesoporous structure, which endowed it with superior adsorption and catalytic performance toward tetracycline (TC) removal. The effect of catalyst dosage, TC concentration, PDS concentration and solution pH on TC removal efficiency were evaluated. The reaction mechanism, investigated by combination of EPR, quenching experiments and LC-MS, indicated that the reactive species included HO·, SO4˙-, and 1O2, but that 1O2 played the dominant role in TC oxidation through a non-radical oxidation pathway. In addition, the reusability and regeneration properties of the ACS-20 catalyst were also studied. This work provides a promising strategy and some theoretical basis for the design and preparation of activated carbon catalysts for advanced oxidation reactions from the viewpoint of pore structure design and S-doping.

14.
Sci Total Environ ; 927: 172289, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599405

ABSTRACT

Cu, as an essential and toxic element, has gained widespread attention. Both salinity and dissolved organic carbon (DOC) are known to influence Cu toxicity in marine organisms. However, the intricate interplay between these factors and their specific influence on Cu toxicity remains ambiguous. So, this study conducted toxicity tests of Cu on Oryzias melastigma. The experiments involved three salinity levels (10, 20, and 30 ppt) and three DOC levels (0, 1, and 5 mg/L) to comprehensively investigate the underlying mechanisms of toxicity. The complex toxic effects were analyzed by mortality, NKA activity, net Na+ flux and Cu bioaccumulation in O. melastigma. The results indicate that Cu toxicity is notably influenced by both DOC and salinity. Interestingly, the discernible variation in Cu toxicity across different DOC levels diminishes as salinity levels increase. The presence of DOC enhances the impact of salinity on Cu toxicity, especially at higher Cu concentrations. Additionally, Visual MINTEQ was utilized to elucidate the chemical composition of Cu, revealing that DOC had a significant impact on Cu forms. Furthermore, we observed that fluctuations in salinity lead to the inhibition of Na+/K+-ATPase (NKA) activity, subsequently hindering the inflow of Na+. The effects of salinity and DOC on the bioaccumulation of copper were not significant. The influence of salinity on Cu toxicity is mainly through its effect on the osmotic regulation and biophysiology of O. melastigma. Additionally, DOC plays a crucial role in the different forms of Cu. Moreover, DOC-Cu complexes can be utilized by organisms. This study contributes to understanding the mechanism of copper's biological toxicity in intricate marine environments and serves as a valuable reference for developing marine water quality criteria for Cu.


Subject(s)
Carbon , Copper , Oryzias , Salinity , Water Pollutants, Chemical , Copper/toxicity , Copper/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Carbon/metabolism , Oryzias/metabolism , Oryzias/physiology , Bioaccumulation
15.
Front Cardiovasc Med ; 11: 1364940, 2024.
Article in English | MEDLINE | ID: mdl-38586175

ABSTRACT

Background: A novel non-contact system for remote parameter testing and reprogramming offers an alternative method for assessing device parameters during cardiac implantable electronic devices (CIEDs) implantation without the need for physical contact with the manufacturer's clinical service technician. The safety and feasibility of using this system in CIEDs implantation procedures remains to be determined. Objective: Evaluate the safety and feasibility of remote parameter testing in CIEDs implantation procedures. Methods: A single center, randomized, open-label, non-inferiority trial (ChiCTR2200057587) was conducted to compare the two approaches for interrogating CIEDs during implantation procedures: routine interrogation performed by on-site technicians or remote interrogation performed by technicians using the 5G-Cloud Technology Platform. Patients aged ≥18 years and elected to receive CIEDs were eligible for inclusion. The primary endpoint was the completion rate of the parameter test. Safety and efficiency were evaluated in all randomly assigned participants. Results: A total of 480 patients were finally enrolled and were randomly assigned to routine group (n = 240) or remote group (n = 240). The primary endpoint was achieved by 100% in both groups (P = 0.0060 for noninferiority). The parameters of sensing, threshold, and impedance regarding the right atrium, right ventricle, and left ventricle had no statistical significance between the two groups (P > 0.05). Procedure time, parameter testing time, and both duration and dose of x-ray irradiation were not significantly different between the two groups (P > 0.05). Shut-open door frequency was significantly higher in the routine group than the remote group [6.00 (4.00, 8.00) vs. 0, P < 0.0001]. Notably, no clinical or technical complications were observed in the remote group. Conclusions: Remote parameter testing is safe and feasible across various devices implantation procedures. The utilization of remote parameter testing and reprogramming could represent an innovative approach to improve healthcare accessibility and unlock the full potential of secondary centers in managing CIEDs. The Registration Identification: ChiCTR2200057587.

16.
Quant Imaging Med Surg ; 14(4): 2762-2773, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617146

ABSTRACT

Background: The preoperative pathological diagnosis of rectal lesions is crucial for formulating treatment plans. For subepithelial lesions (SELs) and larger lesions with necrosis of the rectum, endoscopic forceps biopsy (EFB) cannot provide an accurate pathological diagnosis in most cases. By comparing the efficacy and safety of transrectal contrast-enhanced ultrasound-guided transperineal core-needle biopsy (TRCEUS-TP-CNB) and EFB, this study explored the value of TRCEUS-TP-CNB in the diagnosis of complex rectal lesions, such as SELs. Methods: A retrospective, cross-sectional study was conducted with 32 consecutive patients with complex rectal lesions admitted to our hospital from May 2016 to June 2022. Clinical, ultrasound, and pathological data were collected from these patients who underwent EFB followed by TRCEUS-TP-CNB. Results: The success rate of EFB was 21.88% (7/32) and that of TRCEUS-TP-CNB was 93.75% (30/32). No significant complications were observed for either biopsy method. Factors affecting the success rate of EFB included the lesion width (cm) (1.90±0.62 vs. 4.26±2.40, P<0.001) and lesion thickness (cm) (1.29±0.51 vs. 2.96±1.75, P<0.001). The success rate of TRCEUS-TP-CNB was not affected by these factors. In the paired study of TRCEUS-TP-CNB and EFB, the times of samples per person (1 vs. 2.14±0.90, P=0.015), number of specimens per sample (8.27±1.93 vs. 3.31±1.67, P<0.001), lesion width (cm) (3.79±2.42 vs. 1.90±0.62, P=0.001), and lesion thickness (cm) (2.64±1.75 vs. 1.29±0.51, P=0.001) were the factors affecting the difference of the sampling success rate. In the SELs, the success rate of EFB was 10% (1/10) and that of TRCEUS-TP-CNB was 100% (10/10), and the difference between the two groups was statistically significant (P=0.004). Conclusions: TRCEUS-TP-CNB is an effective biopsy method for complex rectal lesions. The success rate of EFB is lower in the larger lesions. Compared with EFB, TRCEUS-TP-CNB required fewer times of samples be taken and obtained more specimens. For larger lesions and SELs of the rectum, TRCEUS-TP-CNB is expected to become one of the preferred biopsy methods.

17.
Angew Chem Int Ed Engl ; : e202402453, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622832

ABSTRACT

Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 µm and an area up to 50 cm². The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.

18.
Insect Sci ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616538

ABSTRACT

ATAD3A is a mitochondrial membrane protein belonging to the ATPase family that contains the AAA+ domain. It is widely involved in mitochondrial metabolism, protein transport, cell growth, development and other important life processes. It has previously been reported that the deletion of ATAD3A causes growth and development defects in humans, mice and Caenorhabditis elegans. To delve into the mechanism underlying ATAD3A defects and their impact on development, we constructed a Bombyx mori ATAD3A (BmATAD3A) defect model in silkworm larvae. We aim to offer a reference for understanding ATAD3A genetic defects and elucidating the molecular regulatory mechanisms. The results showed that knockout of the BmATAD3A gene significantly affected the weight, survival rate, ATPase production and mitochondrial metabolism of individuals after 24 h of incubation. Combined metabolomics and transcriptomics analysis further demonstrated that BmATAD3A knockout inhibits amino acid biosynthesis through the regulation of mitochondrial ribosomal protein expression. Simultaneously, our findings indicate that BmATAD3A knockout impeded mitochondrial activity and ATPase synthesis and suppressed the mitochondrial oxidative phosphorylation pathway through B. mori mitochondrial ribosomal protein L11 (BmmRpL11). These results provide novel insights into the molecular mechanisms involved in the inhibition of development caused by ATAD3A deficiency, offering a potential direction for targeted therapy in diseases associated with abnormal ATAD3A expression.

19.
Front Oncol ; 14: 1367907, 2024.
Article in English | MEDLINE | ID: mdl-38665944

ABSTRACT

Purpose: To assess the utility of fat fraction quantification using quantitative multi-echo Dixon for evaluating tumor proliferation and microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Methods: A total of 66 patients with resection and histopathologic confirmed HCC were enrolled. Preoperative MRI with proton density fat fraction and R2* mapping was analyzed. Intratumoral and peritumoral regions were delineated with manually placed regions of interest at the maximum level of intratumoral fat. Correlation analysis explored the relationship between fat fraction and Ki67. The fat fraction and R2* were compared between high Ki67(>30%) and low Ki67 nodules, and between MVI negative and positive groups. Receiver operating characteristic (ROC) analysis was used for further analysis if statistically different. Results: The median fat fraction of tumor (tFF) was higher than peritumor liver (5.24% vs 3.51%, P=0.012). The tFF was negatively correlated with Ki67 (r=-0.306, P=0.012), and tFF of high Ki67 nodules was lower than that of low Ki67 nodules (2.10% vs 4.90%, P=0.001). The tFF was a good estimator for low proliferation nodules (AUC 0.747, cut-off 3.39%, sensitivity 0.778, specificity 0.692). There was no significant difference in tFF and R2* between MVI positive and negative nodules (3.00% vs 2.90%, P=0.784; 55.80s-1 vs 49.15s-1, P=0.227). Conclusion: We infer that intratumor fat can be identified in HCC and fat fraction quantification using quantitative multi-echo Dixon can distinguish low proliferative HCCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...